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SUMMARY 

This  study i s  confined t o  a subproblem of a m a j o r  problem. The 

The subproblem t r ea t ed  h e r e  i s  that  
m a j o r  problem is  viewed as that of selecting a pa r t i cu la r  design f r o m  
s e v e r a l  proposed design concepts.  
of es t imat ing  the rel iabi l i ty  of the proposed concepts,  with pa r t i cu la r  
e m p h a s i s  on complex sys t ems .  

The ana lys i s  of s imple sys t ems  is d iscussed  whereby  the sys tem 
re l iab i l i ty  equation can be determined by a relat ively easy  application 
of the.fundamenta1 probabili ty theorems.  F o r  complex s y s t e m s ,  two 
methods  a r e  presented .  First, a canonical expansion s c h e m e  technique 
is used  when the sys t em h a s  a relat ively few number  of components o r  
the component probabi l i t i es  of fa i lure  a r e  smal l .  
components  in  a sys t em is r a t h e r  la rge  and the above conditions do not 
hold, another  method is p resen ted  to obtain the complete  sys t em r e l i -  
abi l i ty  equation which depends p r imar i ly  on defining per t inent  output 
events  f o r  the sys tem.  

If the number  of 

The rel iabi l i ty  functions fo r  the components  that  make  up a sys tem 
a r e  d i scussed  and f inal ly ,  a l imited d iscuss ion  i s  provided on imple -  
ment ing,  controll ing,  and tes t ing  the solution i n  r e g a r d  to re l iabi l i ty .  



CHAPTER I. SELECTION O F  Pr SYSTEM DESIGN 

Introduction 

The selection of a system design can be treated a s  an engineering 

management type problem. A situation may exist whereby the engineering 

manager is confronted with the problem of selecting a particular design from 

several proposed design concepts. 

The nature of the technical decision process is basically the same as 

any other since i t  requires recognition of objectives, formulation of cr i ter ia  

for the system to meet these objectives, and selection of rules o r  strategies 

for making the choice that will hopefully maximize a payoff. ' Criteria for the 

selection of a design concept from several competing ones might be based on 

such elements a s  cost, weight, performance, and reliability. 

Thus the major problem is  somehow to select one concept out of several 

There a r e  methods available to determine how based on established criteria.  

well objectives have been met based on established criteria.  

become difficult when two o r  more quantitative objectives a re  involved. A 

measure of efficiency is required for each objective, and a method is required 

This problem can 

I 1  'J. M. English, "Understanding the Engineering Design Process,  
Journal Of Industrial Engineering, Volume XV, Number 6,  1964, p. 291. 



for  transforming units on each efficiency scale into one standard scale with a 

relative value of points on this scale. 

In many situations, a limitation of resources precludes the necessary 

effort to make the required transformations. In such cases a common proce- 

dure is to select one of the most important objectives a s  a basis for measuring 

the performance of each course of action. Minimum levels of performance for 

the other elements a r e  imposed as  restrictions for an acceptable solution. 3 

Determining the value of each of the elements on which the cri teria is 

based presents subproblems of the major problem. 

of each design concept is such a subproblem, the objective of which is to 

maximize the reliability, which is also the associated measure of efficiency. 

Several different system design concepts, each representing a course of action. 

may be under consideration. Many such systems a r e  of a complex nature. The 

reliability of each system concept is estimated, and the one having the highest 

value is presented as the best candidate from the standpoint of reliability. 

the purposes of this study, reliability may be defined a s  the probability that 

some desired event will occur. 

Estimating the reliability 

For 

2R. L. Ackoff, Scientific Method, John Wiley & Sons, Inc. , 
New York, N. Y., 1962, p. 77. 

?bid., p. 105. 
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Purpose of the Study 

The objective of this study is to develop a method for estimating the 

reliability of complex systems. 

a functional system of such a nature that the reliability of it cannot easily be 

The term complex system is used to indicate 

estimated by application of the fundamental probability theorems. A complex 

system a s  defined here can also be thought of as  composed of a number of 

components such that when a reliability logic diagram is constructed for the 

purposes of making a probability analysis, the diagram does not result  in  a 

ser ies ,  parallel, o r  series-parallel arrangement of the components. 

reliability logic diagrams will be discussed further in Chapter 11. 

The 

Procedure 

Analysis of simple systems will be discussed first. This will consist 

of constructing a reliability logic diagram and applying the basic probability 

theorems to obtain an equation which expresses the reliability of the system 

as a function of the reliabilities of the components which make up the system. 

A complex system will then be discussed using an electrical power 

distribution system as an example. A system functional block diagram wil l  

be used to construct a reliability logic diagram, and a method for estimating 

the reliability under certain conditions will be presented. A t  this point the 

reliabilities of the components that make up the system will  be discussed. 

4 



Another method for estimating the reliability of a complex system will 

then be deve!oped. 

controlling, and testing the solution. 

wil l  be presented. 

Following this will be a limited discussion on implementing, 

Finally, a summary and recommendations 

5 



CHAPTER 11. ANALYSIS OF SIMPLE SYSTEMS 

Simple Systems Defined 

When a system is studied for the purpose of making a reliability 

analysis, a reliability logic diagram is constructed to depict the system. A 

reliability logic diagram is not a functional schematic of the system. It is 

instead a diagram showing the reliability relationship of the components that 

make up the system. 

Simple systems are  characterized by two basic types of relationships: 

se r ies  and parallel. Components a re  in  se r ies  when the failure of any one of 

them would mean a failure of the system. Components a r e  in parallel when 

successful operation of a t  least  one of them would not cause failure of the 

system. Simple systems can also be formed by combinations of these two 

relationships which provide series-parallel systems. 

parallel situations in  which, for example, two out of three components 

operating successfully would ensure successful operation of a system o r  a 

segment of a system. 

There a r e  also semi- 

It is cautioned that these systems a re  not necessarily simple from a 

functional standpoint, but simple from a reliability logic standpoint. A 

system may be highly complicated from a functional standpoint, but it may be 

6 



i :  necessary for  every component in the system to work properly in order  for 

the syst.ern to work properly. Thus such a system would be a simple series 

sys  tem. 

Construction of a Heliability Logic Diagram 

To construct a reliability logic diagram of a system, it is necessary to 

determine the effect of the failure of the components that make up the system. 

This is quite often difficult to do and is best  done by the design personnel who 

are responsible for the system and are most familiar with it. Many times it 

is performed by people in a reliability group. When this situation a r i ses ,  it 

is necessary for the reliability engineer to work very closely with the appro- 

priate design engineer in order to construct the reliability logic diagram. 

After the reliability logic diagram is constructed, the system reliability 

is determined as a function of the reliabilities of the components that make up 

the system. 

This can be accomplished for simple systems by application of the 

fundamental probability theorems given below. 

The Addition Theorem. If Ci and C, are two events which can occur 

simultaneously, the probability that either Ci o r  C, o r  both Ci and Cz will 

occur is 

P(CI  + C,) = P(CI) + P(C2) - P(CiC2) 3 

where P (Ci  + C,) = probability that either Ci o r  C2 o r  both Ci and C2 will 

occur , 

7 



P(C,) = probability that C1 occurs,  

P( C,) = probability that C2 occurs,  and 

P(CiCz) = probability that both Ci and C2 occur. 

If the two events are mutually exclusive so that if  one occurs the other cannot, 

the probability that either C i  or  C2 occurs is 

P ( C , +  C,) = P( C,) + P( C,). 

The Multiplication Theorem. If Ci and C2 are two events, the probability 

that both occur is 

P(C,C,) = P(C,) P(C2 IC,) , 

where P( C2 IC,) = probability that C, occurs, given that C i  has occurred. 

If Ci  and C2 are two independent events such that the occurrence of 

either is not dependent on the other, then the probability that both occur is 

P(CiC2) = P(C,)P(C,). 

Writing the System Reliability Equation 

To illustrate how the system reliability equation is written for  simple 

systems, several hypothetical systems will  be postulated. 

system wil l  be used. Suppose a system containing three components has been 

studied, and it has been determined that every component in it has to operate 

in  order  f o r  the system to operate. A reliability logic diagram fo r  such a 

Firs t ,  a series 

‘P. G. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons , 
Inc. , New York, N. Y. , 1962, pp. 9-11. 
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system is shown in Figure 1-A. Assuming the successful operation of each 

component is an independent event, the system reliability equation is written as 

R =Ri.R,*R,,  
S 

where R = reliability (probability of success) of the system, 

R. = reliability of the ith component, and i = I , 2 , 3 .  

S 

1 

Now consider a system which, after study, results in a parallel 

reliability logic diagram. It  consists of two components, and the successful 

operation of either component will  provide successful system operation. The 

diagram is shown in Figure I-B. Assuming again that the successful operations 

of the components are independent events, the system reliability equation is 

written as 

R R, + R2 - RiRZ, 
S 

where R, = reliability of the system, and 

Ri = reliability of the i th component for 

i =  1,2. 

Now since each component operates either successfully o r  not, the 

relationship 

R + & . = I  
i 1  

th 
is valid where Ri = the reliability (probability of success) of the i 

and Q. = the unreliability (probability of failure) of the i 

this relationship the system reliability equation can also be written as 

component 

th component. With 
1 

9 



Corn ponent 

No. I 

Component Corn ponent 

No. 2 No. 3 
A 

Component 4-T-p 
Component 

No. I 

B. Para l le l  Arrangement 

- 

Figure I. Reliability Logic Diagrams. A: Series Arrangement, 
B: Parallel Arrangement.. 

D 
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R 1 - QiQ2- 
S 

This can be verified as follows: 

Q i =  i - Ri, thus 

Qi  = 1 - R,, and 

Q2 = 1 - R2; substituting into the system reliability equation, 

R = i - ( I - R i )  ( i - R z ) = i - ( i - R z - R i + R i R 2 )  
S 

R = R i  + Rz - RiR2. 
S 

This is the same equation obtained previously. 

Consider now a system consisting of four components. Assume the 

system has been studied and that it is concluded that two of the components are 

redundant (parallel) , and that the other two are in series. 

series-parallel reliability logic diagram shown in Figure 2-A. If independent 

probabilities of success for the components are assumed, the system reliability 

equation is written directly as 

This results in a 

R = R i  ( & + R3 - R2R3) R4, 
S 

where R = reliability of the system, and 

R. = r eliability of th e i component for 

S 
th 

1 

i = 1,2 ,3 ,4 .  

For a semi-parallel system, assume that a system of three identical 

components has been studied and it has been determined that the system will 

operate successfully if  at least two out of three components operate successfully. 

1 1  



Component 

No. I 

3 

Component 

No. 4 

A .  Series- parallel Arrangement 

Component 

No. I 

Component 

No.1 
- - 

At least two out of 

three must operate 
Component 

No.2 

3 

Component 

No. 4 

m Com po nen t 

B. Semi - p a r a l l e l  Arrangement 

Figure 2. Reliability Logic Diagrams. A: Series-parallel 
Arrangement, B: Semi-parallel Arrangement. - I  
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The system reliability equation can be written by application of the binomial 

expansion which is written in compact form2 as 

n 

R~ - x ~ x  . n! 
x =  0 ( n  - x) !X! ( R + Q ) ~ =  

For  this particular problem, 

n = 3 ,  

R = probability of success for each component, and 

Q = probability of failure for each component. 

Expansion of the compact form gives 
n 

R3-x x 
Q = R3 + 3R2Q + 3RQ2 + Q3. 

3! 
x ! ( 3  - x)!  x = o  

The f i r s t  two terms of this expansion represent events for which success will 

be achieved. Thus the system reliability equation is 

R = R3 + 3R2Q. 
S 

The reliability logic diagram for this system is shown in Figure 2-B. 

Numerical Evaluation 

The system reliability is evaluated numerically by direct substitution 

of the component reliabilities into the system reliability equations. For  

convenience of illustration, assume that all the components have a reliability 

of 0. 9900, and thus an unreliability of 0. 0100. 

2P. G. Hoal, Introduction to Mathematical Statistics, John Wiley & Sons , 
Inc. , New York, N. Y. , 1962, p. 86. 
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For the ser ies  system, the system equation was 

R = ( R i )  (Rz) (R3) .  
S 

By direct substitution, 

R = (0 .  9900) (0.9900) (0.9900) 
S 

R 0.9703. 
S 

For the parallel system, the system reliability equation was  

By direct substitution, 

R = 0. 9900 + 0. 9900 - (0.9900) (0 .  9900) 
S 

R = 0. 9999. 
S 

In the series-parallel system, the system reliability equation was 

R = ( R i )  (Rz + R3 - R,’R3) (R4).  
S 

By direct substitution, 

R = (0.9900) [O. 9900 + 0.9900 - (0.9900) ( 0 .  9900)] (0.9900) 
S 

R = 0.9800. 
S 

Lastly, the semi-parallel system produced the system reliability 

equation, 

R = R 3 +  ( 3 )  (R2)  ( Q ) .  
S 

By direct  substitution, 

R = (0 .  9900)3 + 3( 0. 9900)2( 0.0100) 
S 

R = 0. 9997. 
S 

14 



CHAPTER IIT.. ANALYSIS O F  COMPLEX SYSTEMS 

Complex Systems Defined 

A s  discussed in Chapter I ,  the term complex system is used here to 

indicate a functional system composed of a number of components such that 

when a reliability logic diagram is constructed for the purpose of making a 

probability analysis , the diagram does not result in a series , parallel, o r  

series-parallel configuration. Thus the system reliability equation of the 

complex system cannot readily be written by direct  application of the funda- 

mental probability theorems. 

The analysis of complex systems will  be discussed, with an electrical 

power distribution system as an example. This electrical power distribution 

system, shown in Figure 3 ,  is typical of those used in a twin-engine transport 

o r  passenger airplane. This might be one of several proposed systems being 

conside red. 

For each proposed system, it is usually desirable that comparison be 

made on the basis of the probability of achieving several desired events. Some 

of these events would be: 

I. Having power available during flight to at least  one AC 
bus and at least one DC bus, 

2. Having power available during flight to the emergency 
AC bus and the emergency DC bus, and 

15 
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3. Having the capability to dispatch under Federal 
Aviation Agency ( FAA) regulations. 

Construction of a Reliability Logic Diagram for a Complex System 

The construction of a reliability logic diagram for a complex system is 

performed in  the same general manner as for a simple system; however, it 

is much more difficult. Initially, the event which is of concern must be 

defined. 

this event will occur (o r  the probability that it will not occur). 

in Chapter 11, it is necessary to determine the effect of the failure of the 

The immediate objective here is to estimate the probability that 

A s  discussed 

components that make up the system. This requires a thorough understanding 

of how the system operates. 

the system design engineers must be readily available. 

Thus, for expediency, the assistance of one of 

N o  attempt will be made here to give a description of how the electrical 

power distribution system operates as that is not the primary purpose of this 

study. However, it is necessary to point out at least one major feature of the 

system operation. The various buses have the electrical loads divided among 

them in such a manner that the complete loss of one AC bus and one DC bus 

will not adversely affect the operation of the airplane. 1 

Subsequently, to develop the method of analysis, the reliability logic 

diagram will be constructed with the objective of estimating the probability 

‘DC-9 Electrical System Fault Analysis, Engineering Report No. 
LB-32161, Douglas Aircraft Co. ,  Long Beach, California, April, 1965, 
p. 3. ii. 
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of occurrence of the following event: having power available during flight to 

at least one AC bus and at least one DC bus. 

the reliability of the system. In other words, system reliability is equal to 

the probability of having power available during flight to at least one AC bus 

and at least one DC bus. 

This will also be referred to as 

The reliability logic diagram is shown in Figure 4. This diagram is 

constructed from studying the system functional block diagram shown in 

Figure 3, and by drawing, if necessary, on the knowledge of the appropriate 

design engineer. The diagram reveals that there are several possible paths 

for  making power available to the left and right AC buses and the left and 

right DC buses. 

made assuming a system without the optional auxiliary power unit (APU) . 

Also independent probabilities of success for the components will be assumed. 

If sufficient information was available and it was determined that some of the 

probabilities were dependent, then the dependent probabilities would be used. 

It is also assumed that mechanical power is available to drive the generators. 

Although it is difficult to provide specific rules for  constructing a reli- 

To avoid overcomplicating the analysis, the study will be 

ability logic diagram such as Figure 4 from an operational o r  functional block 

diagram such as Figure 3,  it is worthwhile to discuss the approach for  doing 

so. As mentioned previously, the operational diagram in Figure 3 reveals 

that there are several possible paths for  making power available to the left 

and right AC buses and the left and right DC buses. 

18 
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The paths can be traced from left to right by beginning with the source 

(generators) and ending with the output components (AC and DC buses).  

While proceeding to trace the paths, blocks are drawn to indicate the compo- 

nents which the logic paths connect, and the components a r e  identified in the 

blocks. It is also possible to trace the paths from right to left, o r  from the 

AC and DC buses to the generators. Actually, it may be desirable to trace the 

paths in both directions to provide a self-checking method. 

A s  an example, consider tracing the paths for making power available to 

the AC buses. Starting from left to right a block can be constructed in the 

upper left hand corner to represent the right generator. A path is then drawn 

from this block to another block which represents the right generator relay. 

This path is then continued to a block representing the right generator bus 

and from there to a block representing the right AC bus. A path for the left 

hand portion is constructed in a similar manner. A block is constructed in the 

lower left hand corner to represent the left generator, and the path is continued 

from left to right, terminating with a block representing the left AC bus. 

After  the right and left hand portions are completed, further examination 

of the diagram reveals a cross-over path to the right of the generator relays 

and to the left of the generator buses. A block is constructed in the appro- 

priate area which represents the AC cross  tie relay. Paths are then 

constructed to connect this block to the left and right hand paths. 

completes construction of the reliability logic diagram for the AC portion. 

This 

20 



The DC portion is constructed in a similar manner. 

completed, discussions are held with the system designer to determine the 

validity of the paths. 

A f t e r  the diagram is 

Writing the System Reliability Equation 

Before proceeding with the analysis of the electrical power distribution 

system, the method to be used will f irst  be demonstrated on two hypothetical 

systems. This should make it easier to understand its application later. First 

consider the simple, two-component system shown in Figure 1-B, Chapter 11. 

The reliability logic diagram of this system depicted a parallel arrangement 

of component 1 and component 2. As discussed in Chapter 11, each component 

operates successfully o r  not, and the relationship 

Ri + Qi = 

is valid where 

R. = the reliability (probability of success) of the i 

Q = the unreliability (probability of failure) of the i 

th component and 
1 

th component. 
i 

Using this relationship, 

R i + Q i =  1 and 

R2 + Q2 = 1 

Taking the product of these two equations gives 

( R i  + &I) (Rz + Qz) = (1) (1) = 1. 

21 



Expanding the left side of the above equation will produce all possible 

events for the system. The expansion is 

RiR2 + RiQ2 + QiR2 + QiQ2 = 1. 

Since the system will work properly if either component i o r  component 2 

o r  both work prope,.:y, examination of the left side of the equation reveals 

that the first three terms represent events for which successful system 

operation will be achieved. Therefore the system reliability ( R  ) as a 

function of the component reliabilities and unreliabilities is 

S 

R = RiR2 + RiQ2 + QiR2. S 

Substituting (1 - R2) for  Qe and (1 - Ri)  for Qi,  the system reliability 

can be expressed as a function of the component reliabilities. Substituting, 

R = RiR2 + Ri(  i - R2) + ( i  - Ri)R2 
S 

R = R i  + R2 - RiR2. 
S 

This is the same equation that was obtained in Chapter I1 by direct  application 

of the addition theorem. 

The system reliability equation can also be determined from the 

canonical form presented below. This is merely a scheme to wri te  out all the 

possible events and show their significance as to success o r  failure of the 

system. 

The procedure of the technique is first to wr i t e  down the term which 

represents success of all the components. Next, the terms are written down 

which represent the failure of a single component. Then the terms are written 
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down to represent the failure of two components. 

until all possible events are represented. The system reliability equation is 

then written by summing those terms that represent events which result in 

system success. 

The process is continued 

EVENT SYSTEM CONDITION 

Success 

Success 

Success 

Failure 

- - RIRz 

R iQ2 

Q iRz 

Q iQz 

- - 

- - 

- - 

Summing the success terms produces the system reliability equation 

R = RIRZ + RiQz + QlRz. 
S 

This is the same equation obtained previously. 

Now consider a system composed of five components. Af te r  being 

studied, a reliability logic diagram is constructed of the system as  shown in 

Figure 5. This is of a more complex nature than the previous one. System 

success is achieved if there is an output from component 4, o r  component 5, 

o r  both. 

system events in canonical form, and summing those which represent success. 

The system reliability equation is determined by expressing the 

EVENT 

- - 
In:! R3R 4R 5 

SYSTEM CONDITION 

Success 

Success 

Success 



- N 0 . I  N 0 . 4  

Figure 5. Reliability Logic Diagram for 
a System of a Complex Nature 

COMPONENT 

- I  

c 4 

COM PON ENT 
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EVENT SYSTEM CONDITION 

Ri%Q3R4R5 = Success 

RIQ2RsR4R5 = Success 

Success - Q IR2R3R4R5 - 

QiQ2%R4R5 = Failure 

Failure RiR2Q3Q4Qs = 

RiQ&Q4Q5 = Failure 

Failure QiRz%Q4Q5 = 
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EVENT SYSTEM CONDITION 

Q iQ2R3R 4Q 5 = Failure 

Failure 

Failure 

Q iQ2R3Q 4Q 5 = Failure 

Failure QiQ2Q3R4Q5 

QiQ2Q3Q4R5 = Failure 

RiQ2Q3Q4Q5 = 

- - Q iR2Q3QQ 5 

- - 

Q iQ2Q3Q4Q 5 = Failure 

The system reliability equation can now be determined by summing the 

terms for those events which represent successful system condition. 

RS = RiR2R3R4R5 + RiR2R3R4Q5 

+ RiR2R3Q4R5 Ri&2Q3R4R5 

R1Q2R3R4R5 QIR2R3R4R5 

RiR2Q3R4Q5 RiQ2R3R4Q5 

+ QIR2R3R4Q5 + Ri%2Q3Q4R5 
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+ R I Q ~ R ~ Q ~ R ~  + QiRzRsQqR5 

+ R I Q ~ Q ~ R ~ R ~  + QiR,Q,R& 

+ RiQzQ3R4Q5 + QiRzQsQqR5 

By substituting ( I-Ri) for Qi, the system reliability equation can be simplified. 

A f t e r  some tedious reduction processes, the equation becomes 

R = RiR4 + R2R5 + RIR~R, + R2R3R4 
S 

- Ri%R3R4 - R1%R3R5 - RiR2R4R5 

- RiRBRdR, - RzR3R4R5 + ~ R I R ~ R ~ R ~ R , .  

It will be seen later in the section on numerical evaluation that this 

reduction is not necessary to obtain a numerical answer. 

With the knowledge gained from the analysis of the relatively simple 

complex system, it will now be easier to understand the analysis of the 

electrical power distribution system. Reference to the reliability logic 

diagram of the system in Figure 4 indicates that certain portions of the diagram 

can be reduced by the techniques used on simple systems. For example, the 

generator and the generator relay can  be combined in series for both the left 

and right portions of the system. In other words, they can be combined by the 

application of the multiplication theorem. 

In the right hand portion, the AC ground service tie relay, the ground 

AC bus, the right transformer rectifier (T-R) No. 2, the reverse current 

relay, and the DC ground service tie relay can also be combined in series into 

a single component. The right T-R No. I and the reverse current relay can 
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be combined in ser ies  into a single component. After this reduction, the 

latter is seen to be in  parallel with the former,  and they can be reduced to 

a single component by applying the addition theorem. A similar reduction 

can be made in the left hand portion of the system. 

After the techniques used on simple systems have been applied as exten- 

sively as  possible, a simplified reliability logic diagram can be constructed 

as shown in Figure 6. Examination of this diagram reveals that the desired 

event discussed previously is achieved if  there is an output from component 

8 o r  10 or both and from component I 1  o r  12 o r  both. The equation for this 

system's reliability can also be determined by expressing the possible system 

events in  canonical form, and summing those which represent success. How- 

ever ,  these processes become prohibitive for a system with this many 

components. When this is the case,  and the component probabilities of failure 

a r e  small, it is a good approximation simply to determine the numerical value 

of the first  few success terms and sum them to obtain the system reliability 

estimate. In view of this, the construction of the canonical scheme for the 

electrical power system will be delayed until the next section on numerical 

evaluation. 

Numerical Evaluation 

For  a complex system, the reliability can be estimated by compiling a 

list of the success terms from the canonical scheme, numerically evaluating 

them, and obtaining the sum of these numerical values. The estimate can also 
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be obtained from the reliability equation after it has been determined by 

simplifying the sum of the success terms. This can be done quite readily for 

the system of five components, but a s  discussed earlier,  obtaining the complete 

expansion for the electrical power system to determine the complete system 

equation is far too cumbersome. If the component probabilities of failure are 

small, a good approximation can be obtained from the first few terms a s  

previously discussed. 

Both ways will be illustrated using the hypothetical system shown i n  

Figure 5. 

terms as they appear in the canonical scheme. 

assume each component has a reliability of 0. 90000 (hopefully, much higher in  

a n  actual system) and thus an unreliability of 0. 10000. 

Firs t  consider the method of numerically evaluating the success 

For convenience of illustration, 

SUCCESS TERM NUMERICAL EVALUATION 

RIR2R3R4R5 0. 59049 

R1 %Q3 R4Q 5 

R1Q2R3R4Q 5 

0. 06561 

0.06561 

0.06561 

0. 06561 

0.06561 

0.00729 

0.00729 



SUCCESS TERM 

Q iR2R3R4Q5 

lR2Q3Q qR 5 

RiQ2R3Q4R5 

Q iR2R3Q4R5 

IQ2Q3R4R5 

Q1R2Q3R4R5 

S 
R 

NUMERICAL EVALUATION 

0. 00729 

0 .00729 

0. 00729 

0. 00279 

0. 00729 

0 .00729 

0.00081 

0. 00081 

0. 97848 

Now consider the method of substituting the component reliabilities 

directly into the reduced system equation. 

previous section is 

The system equation obtained in the 

R = RiRd + RzR5 + RlR3R5 + R2R3R4 
S 

- RiqR3R4 - R I R ~ R ~ R ~  - RiRzIidR5 

- RiR3R4R5 - RzR3R4R5 + ~ R I R Z R ~ R ~ R ~ .  

By direct  substitution, the reliability estimate is 

R = 0.97848. 
S 

This agrees with the value obtained before. 

Construction of the canonical scheme for the electrical power system has 

been delayed until now. The numerical estimate of the system reliability will 

be included in the scheme. Under the system condition column, S will denote 
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success, and F will denote failure. For  convenience of illustration, relia- 

bilities for the components as shown in Figure 6 will be assumed to be 0. 999000. 

Thus the component unreliabilities are 0. 001000 ( i  x 

From the binomial expansion, the term indicating three failures is 

220R9Q3. 

one, so this would represent a sum total of less than 220 x 

portion of this sum represents failure, terms involving three Q's would not 

make any significant contribution. 

decrease correspondingly. Therefore, it is necessary only to list and evaluate 

those success te rms  involving zero, one, o r  two Q ' s .  For those te rms  repre- 

senting failure, the word f'nonef' will appear under the numerical value column. 

Since Q = i x Q3 = ( 1 x i O - 3 ) 3  = i x Now R is less than 

Since a 

Terms involving higher orders  of Q would 

EVENT 

IR2R3R4R 5R6R7R tJR $1 di 1 lR 12 

l%R3R4R 5R6R7R8R 8 I dRllQ 12 

IR2R3R 4R 5R6R7R8R gR io& llR 12 

I%R3R4R5R6R7R8R9QldRllR12 

IR2R3R4R 5R6R7R8Q 6 I@ 1 lR 12 

I%!R3R4R5R6R7Q8R 6 IS1 IR12 

IR2R3R4R 5R6Q7R 8R SR I di 1 lR 12 

1R2R3R4R5Q6R7R 8R&IdR l l R i 2  

l%R3R4Q5R6R7R8R9Rl& I lR 12 

iR2R3Q4R &6R7R gR 8 I& I IR12 

SYSTEM NUMERICAL 
CONDITION VALUE 

S 

S 

S 

S 

S 

S 

S 

S 

S .  

S 

0. 98806578 

0. 00098905 

0.00098905 

0. 00098905 

0. 00098905 

0. 00098905 

0. 00098905 

0. 00098905 

0. 00098905 

0.00098905 



SYSTEM NUMERICAL 
EVENT CONDITION VALUE 

0. 00098905 

0. 00098905 

- 1%QSR4R 5R6R7R8R @ 1 @i iRi2 - S - 

@2R3R4R5R6%'R8R$l@iiRi2 - S - 

- 

- - 

Q iR2R3R4R 5R6R7R~R& i ORi iRi2 - - S - - 0. 00098905 

In the events that are iterated below, the appropriate R belongs to a 

space if that space is  void of a symbol. 

.00000099 - - S - Q i o  Qi2 - 

.00000099 - S - - - Q s  Q 12 

.00000099 - S - - - QE Q 12 

.00000099 - S - - - Q7 Q 12 

Q6 Q 12 

Q 5  Q 12 

Q4 Q 12 

Q3 Q 12 

Q2 Q 12 

Q i  Q 12 

.00000099 

.00000099 

~00000099 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 - - S - - Q6 Q i i  
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EVENT 

1%R3R@ $ 6 q R  & $I& 1 lR 12 

Q 4  Qii  

Q3 Qii 

Q2 Qii 

Qi  Qii 

R1R2R3R4R5R6R7R8Q&i$iiRi2 

QB Q i o  

Q7 Q i o  

Q 6  Q i o  

Q 5  Q i o  

Q4 Q i o  

Q3 Q i o  

Q2 Q i o  

Q i  Q i o  

iR2R3R4R5R6R7Q 8 Q @ i & i i R i 2  

Q7 Q 9  

Q 6  Q 9  

Q5 Q9 

Q 4  Q9 

Q3 Q 9  

SYSTEM 
CONDITION 

NUMERICAL 
VALUE 

.00000099 

.00000099 

.00000099 

.00000099 

. 00000099 

. 00000099 

None 

. 00000099 

.00000099 

. 00000099 

None 

. 00000099 

. 00000099 

. 00000099 

.00000099 

. 00000099 

.00000099 

. 00000099 

.00000099 

.00000099 

. I  
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EVENT 

iQ2R3R4R5R6R7Q 8Q$I&iIRi2 

Qi  Q9 

i ~ R S R 4 R s & 6 Q 7 R 8 R ~ 1 ~ i 1 R i 2  

Q 5  Q7 

Q4 Q7 

Q3 Q7 

Q2 Q7 

Qi  Q7 

SYSTEM 
CONDITION 

S 

S 

S 

S 

F 

S 

S 

S 

S 

F 

S 

F 

S 

S 

S 

F 

S 

S 

S 

S 

NUMERICAL 
VALUE 

.00000099 

. 00000099 

.00000099 

.00000099 

None 

.00000099 

,00000099 

.00000099 

.00000099 

None 

. 00000099 

None 

.00000099 

.00000099 

. 00000099 

None 

.00000099 

.00000099 

.00000099 

.00000099 



EVENT 

I%R3Q 4Q $6R7R BR & 10% IR12 

Q3 Q5 

Q2 Q5 

Q i  Q5 

i%Q3Q 4R 5R6R7R BR &i&l lR 12 

Q2 Q4 

Q i  Q4 

iQ2QsR 4R 5R6%R BR fi I 0% lR12 

Q i  Q3 

SYSTEM 
CONDITION 

NUMERICAL 
VALUE 

None 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 

.00000099 

None 

Summing these success term evaluations will produce an estimate of the 

system reliability. The value is 

R = 0.999991. 
S 
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CHAPTER IV. COMPONENT RE LIA BILITIES 

Component - Reliability Functions 

Before proceeding further, the determination of the reliabilities of the 

components that make up a system should be discussed. This will not be an 

all inclusive discussion, as component reliability functions are treated in 

several  books such as the one by Lloyd and Lipow. Component reliability 

functions have been derived from the specific applications of functions that 

have existed for many years. 

The reliability function can be computed from the mutually exclusive 

relationship 

Thus 
R( t )  + Q(t) = 1. 

R ( t )  = 1 - Q ( t ) ,  where 

R (  t) = reliability of the component as a function of time ( o r  some other 

variable) and one o r  more parameters, and 

Q(t)  = unreliability of the component as a function of time ( o r  some other 

variable) and one o r  more parameters. 

The component unreliability function can be defined in terms of a failure 

distribution function (cumulative probability) o r  in terms of a failure frequency 

ID. K. Lloyd and M. Lipow, Reliability: Management, Methods, and 
Mathematics, Prentice-Hall, Inc. , Englewood Cliffs, New Jersey ,  1962, 
pp. 112-156. 
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function (probability density function) These functions can be discrete o r  

continuous. Many of these functions exist, but only a few will be discussed. 

For  a continuous function, the unreliability distribution function is 

Q(t)  = P r ( T s  t) ; 0 < t < 00. 

This equation states that the unreliability, as a function of the variable time, 

is equal to the probability that the time of failure, T ,  is less than o r  equal to 

the time, t. In other words, it is the probability that the component has 

failed in the time interval 0 to t. 

If f ( t )  is the time derivation of Q( t) then 

f ( t ) d t  = Pr(t  5 T c  t + dt) .  

In this equation, f ( t )  is the failure frequency function. The left hand side of 

the equation represents the frequency with which the component, beginning to 

operate at t = 0, will fail in the interval t to t + dt. 

From the proceeding discussions, it can be seen that 

Q ( t )  = f ( t )  dt. 

Using the basic concept of a frequency function,2 the component reliability 

function is determined to be 

R( t )  = Jtm f ( t )dt .  

This follows from the relationship 

f (  t )d t  + Jtm f (  t )d i  = I. 

2P. G. Hoel, Introduction to Mathematical Statistics, John Wiley & Sons, 
New York, N. Y . ,  1962, p. 35. 
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For a discrete function, the failure frequency function, f (  x) , is a 

function that gives the probability that the random variable x will assume any 

particular value in  its range. Thus 

a - I  

x = o  
Q(x)=  z f ( x )  = P r ( O S x s a -  I), and 

n 
R ( X )  = f ( x )  , since 

x = a  

x =-0 x = a  

The Normal Function 

The normal function is used as an approximating function to compute the 

reliability of a component when the component tends to have wearout charac- 

teristics. The failure frequency function for the normal function is 

I e w, where f ( t )  = - 

t = the age of the component, 

M = the mean wearout life, and 

CT = the standard deviation of the lifetimes from the mean M. 

If the component starts operating a t  t = 0, the unreliability of the 

component for a period of operation to time T is 

3 9  



Since the normal function is defined from - 00 to + 00, the lower limit should 

be - 00. However, when the transformation of variables is made, the lower 

limit should be sufficiently small to indicate a negligible e r r o r  when the 

evaluation is made using the standard normal tables. The component reliability 

function is 

- ( t  - M)’ 

. I  

In  the above equations, the parameters M and (T actually represent 

sample estimates rather than the true population parameters. 

When the component reliabilities a r e  computed, i t  is desirable to have 

the estimated parameters of the functions adjusted to a specified confidence 

level. In the normal case,  the mean wearout life is adjusted to a lower level 

one-sided confidence limit. If y is the confidence level, the desired equation 

is 

V P r ( M  - Ka Z M )  = y = 0 . 9 0  , 

A 

for example, where M is the estimated mean, 

K is the number of standard deviations from the mean and is a percentage point 
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on the abscissa of the standardized normal curve for a certain area under the 

curve, and the subscript 

Ly = 1 - y.3 

The equation 

(T A 
P r ( M - K c r  &i- ‘ M ) = y  

states that the probability is equal to y and that the true mean wearout life 

is greater than o r  equal to 

(T A 
( M - K a  - 5 ) *  

Thus 

(T 
A 

0 5  
M = M - K  

L 

i the value used in the component reliability function for the m-an wearout 

life. 

A s  an example, assume the following data were available for a component: 
A 
M = I000 hours n = 36 

(T s s = 196 hours y = 0. 90 (confidence level). 

3B. W. Lindgren and G. W. McElrath, Introduction to Probability and 
Statistics, The Macmillan Company, New York, N. Y. , 1959, PP. 165-167. 
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The mean wearout life adjusted to the lower limit would be 

( 196) ML = io00  - KO, 10 = 1000 - 1 . 2 8  

M = 967, 3 hours. 

This would be the value used in the reliability function. 

L 

With an operating time of 500 hours, the reliability 

as 

would be computed 

R( 500) = s5;o f (  t)dt. 

Using the standard transformation, 

= -2.38. 
467.3 _ -  - - t - M 500 - 967.3 z =-- - 

u 196 196 

The area under the curve corresponding to this value gives a reliability of 

R = 0. 9913. 

The Binomial Function 

The binomial function can be used to compute the reliability of a 

component when the component operation consists of a number of trials for a 

given period of operation. It is a discrete function and its failure frequency 

function is 

n - x  
Rx (1 - R) n! f (x)=  x! (n  - x)!  

n = number of items tested o r  subjected to operation, 

R = probability of successful operation on any ons t r ia l ,  and 
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x = number of successful trials out of the total number n. 

The component reliability function is given by 

where the component must operate at least an s number of times. In this 

equation, n may very well be equal to s. In actual practice, R in the above 

equation represents an estimate which has  been adjusted to a lower one-sided 

confidence limit. 

The lower one-sided Confidence limit estimate is computed from the 

equation 

n - x  
= I - y ,  where n! 

x =  s 

n = number of trials from which R is estimated, and 

R = reliability for the one-sided lower confidence limit. L 

For  a given confidence level, y ,  the equation can be solved for  RL. This 

provides a 100 y percent confidence statement that the true reliability , R, is 

greater  than or  equal to the lower one-sided confidence limit R 

can be solved by trial and e r r o r  o r  by the use of established tables.5 

This equation L' 

4P. G. H o d ,  Introduction to Mathematical Statistics, John Wiley & Sons, 
New York, N. Y . ,  1962, pp. 86, 239. 

5J. R. Cooke, M. T. Lee, and J. P. Vanderbeck, Binomial Reliabilitx 
Table, U. S. Naval Ordnance Test Station, China Lake, Calif. , January 1964. 
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As an example, assume that a component had been subjected to 500 trials 

and was successful 499 times. For a given confidence level of y = 0. 90, the 

established tables give a lower one-sided confidence limit of R = 0. 99224. L 

This is the value used in the component reliability function. If the 

component had to operate successfully for  one trial during a given period of 

operation, its reliability would be computed as 
4 I 

R ( i )  = 2 i! (0.99224) '( 1 - 0.99224) 
x = i  

R( 1) = 0.99224. 

The Exponential Functior, 

The exponential function is used as an approximating function to compute 

the reliability of a component when the component is subjected to failures that 

occur a t  random intervals. The failure frequency function for  the exponential 

function is 

- A t  
f ( t )  = A e  , where 

t = operating time period, and 

A = average failure rate (assumed to be a constant). 

If the component starts operating at t = 0,  the unreliability of the 

component for a period of operation to time t is 

t Q(t) = so f ( t ) d t  = sot A e  - Atdt 

- A t  Q ( t ) = i - e  . 
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The reliability of the component is 

R( t )  = Jtm f ( t )dt  = Jtm he ' 
- A t  R(t)  = e  . 

The reliability function for the exponential situation can be derived as a 

special case of the generalized Poisson Law 

where P (t) is the probability of exactly n failures during the tirAe interval 

0 to t. 

n 

For  a given component, the probability of having zero failures for that 

particular component is 

( A t l o  - A t  - A t  = e  R( t )  = Po(t) = e 
O! 

- A t  R ( t )  = e  . 

The lower one-sided confidence l imit  for the exponential case is taken 

care of by adjusting the mean-time-between failure parameter. The mean- 

time-between failure, denoted by m ,  is given as the reciprocal of the failure 

ra te ,  o r  m = - . 

variable which is distributed as chi-square ( x2) with 2 r  degrees of freedom 

A 

m 
A m It has been shown that the ratio 2 r  - is a random 

61. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and 
Modern Engineering, McGraw-Hill Book Co. , Inc. , New York, N. Y. , 
pp. 654-657. 
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A 
where r is the number of failures. 

the total test time (T) by the number of failures. The symbol m represents 

The estimate m is obtained by dividing 

the true population parameter. The confidence limit equation is 

This equation states that there is a probability of y that the value of the ratio 
A 
- 2rm will be less than or  equal to the indicated chi-square percentage point. 

m 

By rearrangement, the equation may be written as 

Thus the lower one-sided confidence limit is 

The probability is y that the true m will be greater than o r  equal to this value. 

It is this value that is used in the component reliability function. 

As an example, suppose that from actual component operating experience 

A 
an estimate m were determined to be 

m =  A - -  20'ooo hours, where r - 1  

r = 1, the number of failures, and 

T = total test time, 20,000 hours. 

Fo r  a 90 percent confidence level (y) , the lower one-sided confidence limit is 

- (2) (I) (20,000) - 40,000 
- - 

2 r m  

CY ;2r 4.605 c L = 2  

'B. Epstein and M. Sobel, "Life Testing, I t  American Statistical 
Association Journal, Sept. 1953, pp. 486-502. 
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C = 8,700 hours. L 

Using this value and a one-hour operating time, the component relia- 

bility equation gives 
4 I - -t - A t  m R( t )  = e  = e  

- 0.000115 
R(1) = e 

R(1) = 0.999885. 

- The Weibull Function 

The Weibull function is a function which has the capability of theoretically 

describing many different shapes of failure rate functions. The failure fre- 

quency function for the Weibull function is 

, where Q! - I - AtQ! f ( t )  = CYAt e 

a! > O , A > O ,  

A = scale parameter, and 

(Y = shape parameter. * 
If a component has a Weibull failure frequency function, the unreliability 

of the component for a period of operation from t = 0 to time t is 

Q(t)  = f ( t )d t  

- AtQ! 
Q(t) = I - e 

8D. K. Lloyd, and M. Lipow, Reliability: Management Methods, and 
Mathematics, Prentice-Hall, Inc. , Englewood Cliffs, New Jersey ,  1962, 
pp. 137-138. 
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The reliability of the component for the same operating period would be 

- Ata 
R ( t )  = e 

When the shape parameter, a ,  is equal to one, the exponential function 

is a special case of the Weibull function. If Q = I is substituted into the 

component reliability function, the result  is R( t )  = e - A t  . This is the same 

equation obtained in the previous section for  the exponential function. 

Selection of a Function 

When a theoretical probability function is being considered as a model 

for the actual probability function, the model should be tested to see how well 

it fits the actual situation. If sufficient data are available to formulate an 

empirical frequency function, one test that can be used is the chi-square 

goodness-of-fit test to see how well an assumed theoretical function matches 

the actual situation. If sufficient data are not available, the function must be 

selected by using judgement based on past experience and a logical rationale. 

The chi-square goodness-of-fit test is performed by evaluating the 

function 

Oj = observed frequencies, 

E.  = expected or  theoretical frequencies, 

x2 = critical value, 

d = k - i - h = degrees of freedom, 

J 

d, a 
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k = number of class intervals, 

h = number of population parameters estimated to determine expected 

frequencies, and 

ac = level of significance for the test. 

The test is performed by stating a hypothesis that the data come from some 

theoretical function. If the calculated value of the chi-square is greater than 

the critical value, the hypothesis is rejected. If the calculated value is less 

than o r  equal to the critical value, the hypothesis is not rejected. 

means that the theoretical function can be used as an approximation to the 

actual situation. 

The latter 

A s  an example of how data inputs to determine models are analyzed to 

establish a reliability function for a component, assume that the data listed 

below have been collected on a particular component. 

represent the time in hours at which a component failed when it started 

operating at t = 0. 

The data presented 

Time of failure in hours 

500 

750 

900 

1000 

4400 

4800 

50 00 

5400 

%I. R. Spiegel, Theory and Problems of Statistics, Schaum 
Publishing Co. ,  New York, N. Y. , 1961 pp. 201-202. 
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Time of failure in hours 

1 500 

1700 

1750 

2200 

2600 

2900 

3000 

3500 

3700 

3900 

4000 

5600 

6600 

7700 

8300 

87 00 

97 00 

10500 

11600 

11800 

12500 

13500 

Total = 150,000 hours 

If these data are grouped into convenient time intervals and the frequency 

of failures is plotted against the time intervals, this will provide a rough idea of 

the form of the failure frequency function. If an equal time interval of I000 

hours is selected and the data plotted on this basis, the form will indicate that 

a theoretical exponential frequency function might be a good model o r  relia- 

bility function for this component. The chi-square goodness-of-fit test wil l  

be applied to this data to see how well the theoretical function fits the actual 
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situation. When this test is used in actual practice, a much larger sample is 

desirable; however, this sample will be sufficient for  the purposes of illustra- 

tion. 

The hypothesis here is that the data came from an exponential population. 

The level of significance ( a )  is selected as a = 0.20. This is the probability 

of rejecting the hypothesis when it is actually t rue.  Before applying the 

chi-square test, it is necessary to determine the expected o r  theoretical 

values for the chosen class intervals. To do this, it is necessary to determine 

the parameters of the theoretical function which is the exponential in this case. 

The exponential failure frequency function is given as 

- A t  f ( t )  = Ae . 

The only parameter in this function is lambda (A), and it is determined b y  

where 
n A = -  

t. 
1 

i = l  

n = sample size o r  the number of components that have failed, and 

t. = time of failure for the i th 
component. 

1 

The next step is to set the k class intervals and to determine the 

theoretical relative frequencies for each class interval. The theoretical o r  

expected absolute frequencies for each class interval is then determined by 

multiplying the theoretical relative frequency of each class interval by the 

value of n. The relative frequency f o r  a particular class interval can be 

determined by setting an upper limit for that class interval, determining the 
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cumulative probability for that upper limit, and subtracting the cumulative 

probability to the upper limit of the next lower class. 

this procedure a re  shown in Table I. 

The results of applying 

Z las s 
j 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I 1  

12 

13 

14 

15 

16 

17 

Table I. Determination of Data for Applying Chi-Square Test 
-~ 
Upper limit 
of class 
interval 

50 0 

io00 

I 5 0 0  

2000 

2500 

3000 

3500 

4000 

4500 

5000 

5500 

6000 

6500 

7000 

7500 

8000 

8500 

Theore tic a1 
Cumulative 
Probability 

. I O  

. 18 

. 2 6  

. 3 3  

. 3 9  

. 4 5  

. 50 

. 5 5  

. 5 9  

. 6 3  

.67  

. 7 0  

. 7 3  

. 7 5  

. 7 8  

. 8 0  

.82  

Theore tic a1 
Relative 
Frequency 
-~ 

. I O  

. 0 8  

. 0 8  

. 07 

. 0 6  

. 0 6  

. 0 5  

. 0 5  

, 0 4  

. 0 4  

. 0 4  

. 0 3  

. 0 3  

.02  

. 0 3  

.02  

. 0 2  

~~~~~~ ~ 

Theoretic a1 
Absolute 
Frcquency 

3. 0 

2 . 4  

2 .4  

2 . 1  

1. 8 

1. 8 

I. 5 

1. 5 

I. 2 

I. 2 

I. 2 

. 9  

. 9  

. 6  

. 9  

. 6  

. 6  



Class 
j 

I 8  

19 

20 

2 1  

22 

23 

24 

25 

26 

27 

28 

29 

Upper limit 
of class 
interval 

9000 

9500 

10000 

11000 

12000 

13000 

14000 

15000 

16000 

17000 

20000 

00 

Table I. --Continued 

Theoretical 
Cumulative 
Probability 

.83 

.85  

. 8 6  

.89  

. 9 1  

.93  

. 9 4  

. 9 5  

. 9 6  

.97 

. 98 

1. 00 

Theore tic a1 
Relative 
Frequency 

. O l  

. 0 2  

. O l  

. 03  

. 0 2  

.02  

. O l  

. O l  

. O l  

. o i  

. o i  

. 0 2  

Theoretical 
Absolute 
Frequency 

. 3  

. 6  

. 3  

. 9  

. 6  

. 6  

. 3  

. 3  

. 3  

. 3  

. 3  

. 6  

Since the theoretical or expected absolute frequency in each class should be 

equal to o r  greater than five, it is necessary to combine some of the classes  to 

meet this condition. Combining certain classes gives the results shown in 

Table 11. 
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Table 11. Data for Applying Chi-square Test 

Upper limit 
of Class 
interval 

1000 

2500 

4500 

7500 

00 

Theoretic a1 
Absolute 
Frequency (E.) 

J 
5. 4 

6. 3 

6. 0 

5. 7 

6. 6 

The calculated value of chi-square is determined by 

Observed 
Absolute 
Frequency ( 0.) 

J 
4 

4 

8 

5 

9 

- - ( 4 - 6 . 3 ) 2 +  ( 8 - 6 . 0 ) 2 +  ( 5 - 5 . 7 ) 2 +  ( 9 - 6 . 6 ) 2  
5. 4 6. 3 6. 0 5.7 6. 6 

= 0.363 + 0.840 + 0.667 + 0. 086 + 1.105 

x2 = 3. 061 

The critical value for chi-square is 

2 ' X 2  = 4. 642 
xd9a!  390.20 

where thedegrees of freedom are determined as 

The value of one is assigned to h since only one parameter was estimated 

from the data. 

Since the calculated value of chi-square is less than the critical value, 

the hypothesis that the data came from an exponential distribution is not 
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rejected. This indicates that it is reasonable to use the exponential function 

as the reliability function for  the component on which the data were  collected. 

Component Reliabilities for the Electrical Power System 

The component reliabilities for components in the electrical power system 

have been computed based on the data in a report on similar components 

operating in a similar environment. lo Since the data provide mean-time- 

between failures (m)  and failure rates ( A ) ,  it is evident that the exponential 

function has been established as the reliability function for the components. 

Table I11 provides for each component in the system the appropriate name, 

the mean-time-between failures (m)  in hours o r  cycles, the failure rate ( A )  

in failures per  hour, and the computed reliability. 

The component reliabilities have been computed based on an operating 

time of one hour. This is a reasonable time to use in view of the typical one- 

hour flights expected fo r  a small twin-engine passenger plane. Components 

which are cycle sensitive are considered to cycle twice during a flight. The 

failure rate entered in Table 111 is appropriately adjusted for these items. 

'OJ. J. Cyran, Electrical Power Svstem Failure Rates, Engineering 
Report No. RE-103, Douglas Aircraft Co., Long Beach, California 
(January 1966). 
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Table ID. Component Data for Electrical Power System 

Component 

Generator 

Generator 
Relay 

AC Cross 
Tie  Relay 

Any Bus 

AC Ground 
Service Tie 
Relay 

Transformer 
Rectifier 
(T-R) 

Reverse 
Current 
Relay 

DC Ground 
Service Tie 
Relay 

DC Cross  
Tie Relay 

m 
(hours o r  
cycles) 

2,500 hours 

31,544 cycles 

18,318 cycles 

500,000hours 

10, 137 cycles 

215,666 hours 

250 , 000 hours 

23,177 cycles 

23,177 cycles 

~~ 

h 
j p e r  hour) 

0.000400 

0.000063 

0.000109 

0.000002 

0. 000197 

0.000005 

0.000004 

0.000086 

0.000086 

Reliability 

0.999600 

0.999937 

0.999900 

0.999998 

0. 999800 

0.999995 

0.999996 

0.999914 

0.999914 
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CHAPTER V. FURTHER ANALYSIS OF COMPLEX SYSTEMS 

Introduction 

In Chapter 111, it was pointed out that using the canonical expansion 

scheme to determine the system reliability equation becomes prohibitive 

when the system has a large number of components and the component proba- 

bilities of failure are not small. When this situation occurs, the sum of the 

numerical evaluations for the first few success terms does not provide a 

sufficiently good approximation. 

To illustrate this point, consider the system shown in Figure 5,  

Chapter III. The expansion scheme for this system contains only 32 items. 

For the electrical power system, however, the complete expansion would 

require 4096 terms. Although identifying success terms in  the expansion 

would be easy, obtaining the expansion itself would require a tremendous 

amount of labor. 

A Method for  Determining the System Reliability Equation 

When conditions are such that the canonical expansion scheme is not 

very attractive, the system reliability equation can be obtained by defining 

pertinent events for the system. These events may be output events 

representing outputs from the terminal components of the system, o r  they may 

represent outputs from components internal to the system. 
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A f t e r  these events are defined, equations are written expressing the 

probability of their occurrence. The probability of getting output events from 

internal components is written in terms of the preceding components. 

probabilities of getting output events from terminal components are written 

in terms of the probability of occurrence of the outputs from internal compo- 

nents and in terms of the reliabilities of certain components as necessary. 

The primary reason for  defining output events from certain internal components 

is to simplify writing the initial equation for  the system reliability. A f t e r  the 

above is accomplished, the system reliability equation is then written in terms 

of the probability of occurrence of the events defined in terms of outputs from 

terminal components. 

The 

This method will be demonstrated first on the system shown in Figure 5,  

Chapter III. Success is achieved for this system if there is an output from 

component 4, o r  component 5, o r  both. 

derived for this system and is given in Chapter 111. 

The complete reliability function was 

Let the following events be defined: 

Event A = output from component 4, and 

Event B = output from component 5. 

If an expression can be derived for the probability of occurrence of the 

events A and B, then the system reliability equation can be determined as 

Rs = Pr(A) + P r ( B )  - Pr(A)Pr(B). 
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The equations f o r  the probability of occurrence of events A and B a re  given 

I -  

below: 

P r ( A )  = 

P r ( B )  = 

[R2R3(I - Ri)  + Ri] R4 

[R,R3(1 - R2) + R2] R5. 

The system reliability equation is then determined a s  

This equation can be simplified by using one of the fundamental laws from 

Boolean algebra. The law is 

1 x2 = x. 

A s  related to the above equation, this can be interpreted as follows: the 

probability that a particular component works times the probability that same 

component works simultaneously is in reality just  the probability that the 

component works. Thus, in the above equation, 

R: = R ~ ,  R: = R,, etc. 

IC. I. Lewis, A Survey of Symbolic Logic, Dover Publications, Inc. , 
New York, N. Y . ,  1960, p. 54. 

I 
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- R I R ~ R Q R ~  + R I R ~ R ~ R ~ R ~  - Ri%R4Rp 

The equation can now be simplified and written as 

R = RiR4 + RZR5 + RiR3R5 + %R3R4 - R I ~ R ~ R ~  - R I R ~ R ~ R ,  - RiR2R4R5 
S 

- RiR3R4R5 - qR3R4R5 + 2Rl%R,RqR5. 

This is the same equation that was obtained from the complete expansion in 

Chapter 111 and thus demonstrates the validity of this method. I t  should be 

pointed out that if two o r  more factors in an equation contain terms involving 

some components which a re  the same, and multiplication of these factors is 

indicated, then the multiplication must be performed and the resulting 

expression simplified by applying the fundamental Boolean law. 

Application of the Method to the Electrical Power System 

The method that has just been demonstrated in  the previous section can 

now be applied to the electrical power system. 

Reference to Figure 6,  Chapter 111, indicates that success is achieved 

for the electrical power system if there is an output from component 8 o r  10 o r  

both, and from component 11 o r  12 or  both. 

defined : 

Event E = output from component 4, 

Event F = output from component 5 ,  

Event AC = output from component 8 o r  10 o r  both, and 

Event DC = output from component 11, o r  12, or  both. 

Let the following events be 
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An expression can be derived for the probability of occurrence of each 
- 

of the above events. For the event E ,  the equgtion is 

RE = [R2R3( i - Ri) -+ Ri] R, 

RE = 
RiR4 + R2RsR4 - RiRzRsRb 

For the event F, the equation is 

For the event AC, the equation is 

= RER8 + RFRio - RERgFRio. RAC 

For the event DC, the equation is 

61 



It  is more convenient to obtain a numerical estimate of the system 

reliability for  a specific operating time by first computing the values for R 
E ,  

R,, and R7, and then substituting them into the above equation. 
R ~ ,  R ~ R ~ ’  

The expression fo r  R was E 

R = RIR, + %R3R4 - R&R,R*. E 

Substituting the component reliability functions with the appropriate parameters 

(established in Chapter IV) gives 
6 

465 X + e-574 X I O -  - ,-I037 X R = e- E 

The expression for R was F 

RF = R2R5 + R1R3R5 - RlRZR3R5. 

Making the appropriate substitutions gives 

R = ,-465 X + e-574 X - ,-I037 X IO- 6t 
F 

The expression for R R is E F  

R R = RlqR4R5 + RlRsRqR5 + R ~ R ~ R ~ R s  - ~ R I R ~ R ~ R ~ R ~ s  
E F  

Making the appropriate substitutions gives 

R R = e -  930 X + 2e-576 X - ~ ~ - 1 0 3 9  x 10- 6 t  
E F  

The logic component number six is made up of two parallel branches as 

can be seen from Figure 4, Chapter 111. Let branch denote the branch 

consisting of the AC ground service tie relay, ground AC bus, right trans- 

former-rectifier No. 2, reverse current relay, and DC ground service tie 

relay. Let branch “b” denote the branch consisting of the right transformer- 

rectifier No. 1 and a reverse current relay. The expression for  R6 can then 

be written as 
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R 6 = R a + R  - R  R 
b a b' 

The appropriate substitution gives 

6t -503 X R - e-294 x + ,-9 X 10- - e  6 -  

For  the logic component number seven, branches %" and "d" can be 

defined in a similar manner. The expression for % can then be written as 

R 7 = R  + R  - R R  c d c d '  

The appropriate substitution gives 

R - Ze-9 x 10- 6t - ,-18 x 
7 -  

In the system reliability equation, those portions of the terms which 

consist of combinations of the components 8 through 12 can be combined 
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CHAPTER VI. IMPLEMENTING, CONTROLLING, 
AND TESTING THE SOLUTION 

Implementation and Controls for the Solution 

A s  discussed in Chapter I ,  the major problem confronting engineering 

management is that of selecting a particular design from several proposed 

design concepts based on established criteria.  

might be based on such elements a s  cost, weight, performance, and reliability. 

A f t e r  one concept is selected, implementation takes place which consists 

The criteria for selection 

of the complete development of the chosen design. 

or  not the design concept is valid from a functional standpoint and if the design 

meets the established criteria. 

This will determine whether 

Controls for the solution consist of maintaining a record a s  to how well 

the design is meeting the established criteria throughout its development. 

From the standpoint of reliability, if the initial design configuration is changed, 

the reliability must be estimated again to determine the effect of the change. 

If the reliability estimate decreases significantly, engineering management 

should be made aware of the decrease and the designers may be asked to 

attempt to improve the design. 

. 
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Testing the Solution 

Except in unusual cases ,  the reliability of a system cannot be estimated 

from testing until the system has been put into actual operation. Even then, 

for complex systems, it may not be possible to get an estimate of the system 

reliability until the system has benn operated for many thousands of hours. 

When the latter occurs, it is possible in a much shorter time to obtain 

reliability estimates of a t  least some of the components that make up the 

system. These component reliability estimates, based on actual operating 

experience, can then be used in the system reliability equation to obtain an 

estimate of the system reliability. 

compared with the initial predictions. 

These updated evaluations can then be 
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CHAPTER VU. CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

A s  proposed in Chapter I, this study has been confined to a subproblem of 

a major problem. The major problem was viewed as that of selecting one 

particular design from several proposed design concepts based on established 

criteria. The subproblem as treated here was that of estimating the reliability 

of the proposed concepts, with particular emphasis on complex systems. 

In Chapter 11, the analysis of simple systems was discussed. When a 

system is studied for a reliability analysis, a reliability logic diagram is 

constructed that shows the reliability relationship of the components that 

make up the system. When this diagram resulted in a simple ser ies ,  parallel, 

o r  series-parallel configuration, the system was viewed as a simple system. 

The system reliability equation for  such a system can be written by a relatively 

easy application of the fundamental probability theorems. 

When the reliability logic diagram did not result in one of the above 

mentioned configurations, the system was viewed as a complex system. In 

Chapter 111, a canonical expansion scheme technique was  used to estimate the 

reliability of a complex system when the system has a relatively small  number of 

components o r  the component probabilities of 'failure are small. A t  this point, 

the reliability functions fo r  the components that make up a system were 

discussed in  Chapter IV. 
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If the number of components in  a system is rather large and the compo- 

nent probabilities of failure are not small, the expansion technique becomes 

too cumbersome as the number of terms involved grows considerably. When 

this situation a r i ses ,  a method can be used which w a s  developed in Chapter V 

to obtain the complete system reliability equation. This method was seen to 

depend primarily on defining pertinent output events for the system. 

Finally, a limited discussion waq provided in Chapter VI on implementing, 

controlling, and testing the solution in  regard to reliability. 

Recommendations 

When a system is determined to be complex and the number of components 

is small o r  the component probabilities of failure a r e  small, the canonical 

expansion method is recommended for use as it wil l  provide the system relia- 

bility estimate fairly quickly. If, however, the number of components is large 

and the component probabilities of failure a r e  not small, it is recommended 

that the method developed in  Chapter V be used. 

When the components that make up a system a re  similar to components 

that have operational experience in environments similar to those expected, 

then sufficient data a re  usually available to obtain reliability estimates for 

the components. If a component is of a research and development nature, 

however, sufficient data a re  not usually available from testing to obtain a 

reasonable reliability estimate. The op t imw method of testing would be to 

simulate simultaneously as many of the expected environments as possible. 
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Since this is usually too expensive, a study should be made on how reliability 

tests can be conducted on components without the simultaneous simulation of 

the expected environments over a long period of time. 

. 
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